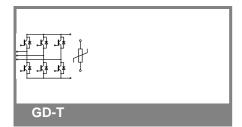


IGBT Module

SK100GD066T

Target Data

Features


- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications

- Inverter up to 22 kVATyp. motor power 11 kW

Absolute Maximum Ratings $T_s = 25$ °C, unless otherwise specified							
Symbol	Conditions			Values	Units		
IGBT							
V_{CES}	T _j = 25 °C			600	V		
I _C	T _j = 175 °C	T _s = 25 °C		105	Α		
		$T_s = 70 ^{\circ}C$		85	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			200	Α		
$V_{\rm GES}$				± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		6	μs		
Inverse Diode							
I_{F}	T _j = 175 °C	$T_s = 25 ^{\circ}C$		99	Α		
		$T_s = 70 ^{\circ}C$		79	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			120	Α		
Module							
$I_{t(RMS)}$					Α		
T_{vj}				-40 + 150	°C		
T _{stg}				-40 +12 5	°C		
V _{isol}	AC, 1 min.			2500	V		

Characteristics T _s = 25 °C, unless otherwise specified						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						_
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.6 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C				mA
		T _j = 125 °C				mA
I_{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		5,5	7,5	mΩ
		T _j = 150°C		8,5	10,5	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,65	2,05	V
C _{ies}				6,1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,38		nF
C _{res}				0,18		nF
$t_{d(on)}$				134		ns
t _r E _{on}	R_{Gon} = 44 Ω	V _{CC} = 300V		125		ns
E _{on}		I _{Cnom} = 100A		8,1		mJ
$t_{d(off)}$	R_{Goff} = 44 Ω	T _j = 125 °C		1131		ns
t _f		V _{GE} = -7/+15 V		86		ns
E _{off}				4,5		mJ
$R_{th(j-s)}$	per IGBT			0,65		K/W

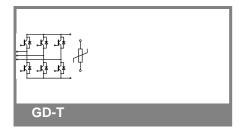
IGBT Module

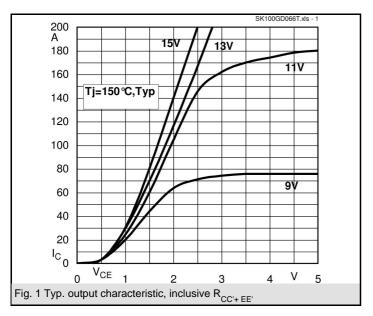
SK100GD066T

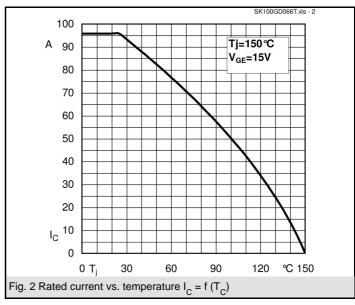
Target Data

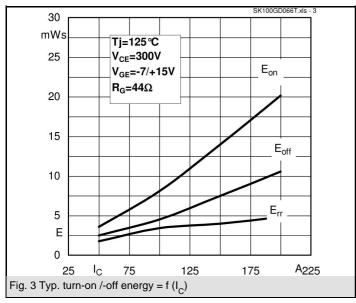
Features

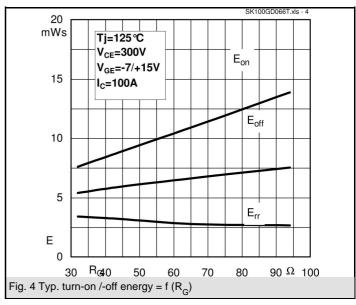
- · One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

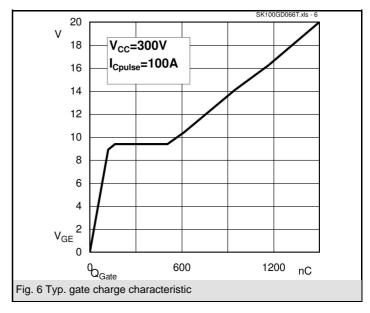

Typical Applications

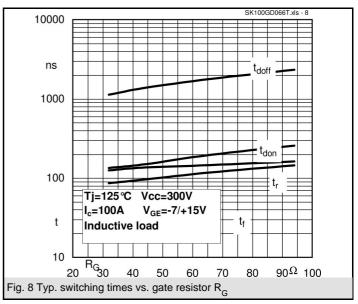

- Inverter up to 22 kVA
- Typ. motor power 11 kW

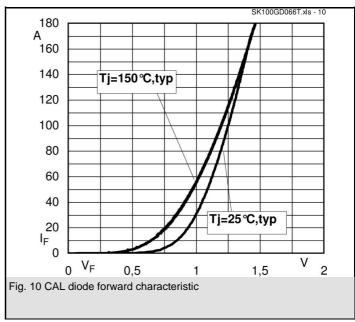

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 100 \text{ A}; V_{GE} = 0 \text{ V}$			1,25		V	
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,2		V	
V_{F0}		T _j = 25 °C		0,95		V	
		T _j = 150 °C		0,85		V	
r _F		T _j = 25 °C		3		mΩ	
		T _j = 150 °C		3,5		mΩ	
I _{RRM}	I _{Fnom} = 100 A	T _j = 125 °C		40		Α	
Q_{rr}	di/dt = 2575 A/µs			20		μC	
E _{rr}	V _{CC} = 300V			3,4		mJ	
$R_{th(j-s)D}$	per diode			0,8		K/W	
M _s	to heat sink				3,5	Nm	
w				60		g	
Temperature sensor							
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω	

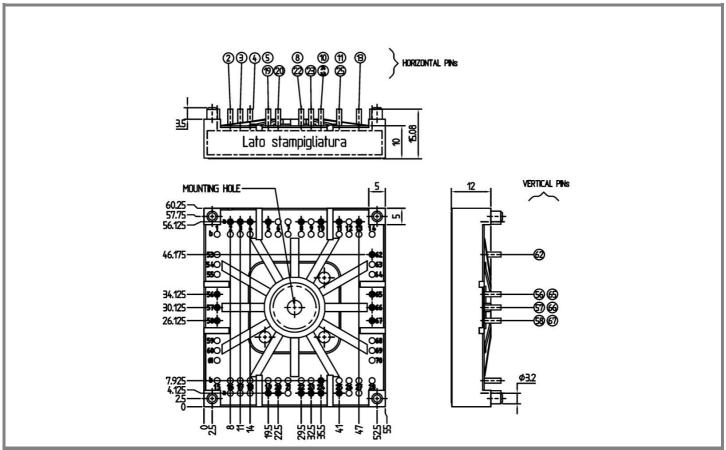

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

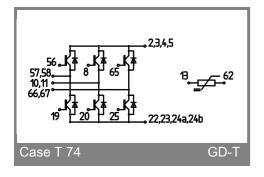

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.











4 14-09-2007 DIL © by SEMIKRON

Case T74 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

